
V A0EA105 437 MARYLAND UNIV COLLEGE PARK DEPT OF COMPUTER SCIENCE P/G 9/2
ERROR PROPAGATION AND ELI M INATIO IN COMPUTER PRFGRAMS.(
JUL A L J MORELL, R G HAMLET R96201 8 N-C-Oo

UNCLA IFIE TR065AFORTR81661 NL

moohlhloEEEE1hE

AFOSR.Ti. 8 1 0 6 6 1 L

4t

COMPUTER SCIENCE
TECHNICAL REPORT SERIES

UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAD DTIC

W20742 SECTE
OT14 1981

.3D
Approved for Pubilo rz.1au.

,,~*10 U43

Technical _RAit .TR-1065 / / -

O F49620-60-C-Oj0 1, ,

Error Propagation and Elimination I / /. ' .
- in9i/n

Computer Programs*-5

Larry ./Morll sad Richard G.,/Hamlet

AI CT 1 I Cr' -)

AND F0TE O1rFICF FF TCT'-',i''S IISEAeC (AISC)
,CO.TICE CF I."-MI rTTL TO DTIC •
.hio tehc-l report hi._ bcn revieved and is
V:ed for Pulic :e IAV AFR 190-12.

nsti-P-.,Itior, is u'jj i,, ted.WA M
'TiEN J. ETz

Chief. Technical Informato D ivision
.'

Abs act: L

The current literature in program testing is surveyed. A strategy
is proposed for eliminating categories of errors from programs.
Errors may be classified as functional (an incorrect input-output
pair) or structural (an incorrect statement). An error is elim.nated
if a successful program execution for a given input implies the pro-
gram could not contain the error. A "creation condition" guarantees
that a structural error affects the program's computation. A "oropa-
gation condition" guarantees that the effect produces a functional
error. An error is eliminated whenever a computation satisfies both
the creation and the propagation condition and produces correct out-
put.

•Research supported in part by the Air Force Office of ScientificResearch, grant r.;mber lff -F496;O-80-C-OC01.

1)!

UNCLASSIFIED
SECURITY CLASSIFICATION OF TMIS PAGE (When Dit, Etntered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
R O D ET O ABEFORE COMPLETING FORM

1. REPORT MUMI"ER GOv ctCSSION NO. 3. maCIPIam, S CATALOG NUMUER

,FOSR-TR. 81 -0661 a ,4 0S 7
4. TITLE (A"E Subtitle) S. TYPE OF REPORT A PERIOD COVERED

ERROR PROPAGATION AND ELIMINATION IN Technical Report
COMPUTER PROGRAMS 6. PERFORMING ORG. REPORT NUME9R

TR-1065
7. 7AUT"4OR() 9. CONTRACT OR GR ANT NUUUERS1l)

Larry J. Morell and Richard G. Hamlet -F49620-80-C-0001

2. PERFORMING ORGANIZATION NAME AND ADDReSS 60JIUGRAM ELEMENT. PROJECT, TASK

Department of Computer Science AREA* *oIC u,.1 NUM'ERS
University of Maryland /,

CleePark,_Maryland_20742____ _________

1I. CO TROLLING OFFICE NAME AND ADDRESS IZ. REPORT OATE

Air Force Office of Scientific Research/NM July 1981
Bolling AFB DC 20332 13. ,UMSER Or PAGES46

14, MONITORING AGENCY MAMIE & ADOMESS(It dillerent front ConrilOIIInj Office) I5. SECURITY CLASS. (of this rp

uncl assi fied
till OECL ASSI)FICATION, DOWNG1RACING

SCNHEDUL.E

WS. OISTRISUTION STATEMENT (of thle Report)

* Approved for public release; distribution unlimited

17. OISTRIGUTION STATEMENT (of the bstrct entered In Block 20, it dliIrent froir Report)

l0. SUPPLEMENTARY NOTES

19 ,(Y #OROS 'Continue l ee* i de i n e . . , s an d denily 6, block number)

mutation testing
" function testing

reliability
error propagation
error elimination

20, AOSTRAC CanttftiU n iR t* t Side it lA"lOS r and Identify S.v block numbers

The current literature in program testing is surveyed. A strategy is prooosed
for eliminating categories of errors from programs. Errors may be classified
as functional (an incorrect input-output pair) or structural (an incorrect
statement). An error is eliminated if a successful program execution for a
given input imolies the program could not contain the error. A "creation
condition" guarantees that a structural error affects the orogram's computa-
tion. A "propagation condition" guarantees that the effect produces a over)

DO 1473 UNCLASSIFIED

SECQ0JRIi' :_.ASSIIC -1'ON : : " S' 1 & E '0-n : .. er e ',

UNCLASSI FIED
SIECUNITY CLASSIFICATION OF TI41S PAGC(W"a Dias. Enree.

20. (cont.) functional error. An error is eliminated whenever a computation
satisfies both the creation and the propagation condition and produces
correct output.

,1 Acoession For

NTIS,. GRA&I

DTIC TAB
Unannounced

Just ificatio ___

By
Divsribl aon/ El CT 1 1981
Availability CoTes

iAvail ondior

Dist Special D

.4

UNCLASSIFIED
SIECUA9? CL ASSIFICATION OP ?wIS &IQ'When 04MO 1nWe8,,i

47

,Tdash"

j. Introduction

Rarely has a developing field rapidly attained a unified under-

standing of itself; program testing is no exception. Three problems

must be addressed if progress is to be made.

(1) How can the quality of test data be measured?

(2) How can the quality of a testing strategy be measured?

(3) What is an appropriate paradigm for program testing '

A positive answer to the first question would provide confidence

in the results of testing a single program. For now, the tester can

merely cite a few statistics (percentage of paths executed, percentage

* J of branches executed. etc.). But what is the value of executing 830% of

the paths? In what sense, if any, is it better to eyecute 1000 test

cases rather than 100? Without an underlying theory statistical

claims are dangerous, because they can lull the tester into a false

sense of security.

Answering the second question does not automatically answer the

first; a good strategy may sometimes produce a bad test set. The

characteristics of a good strategy could guide researchers into mote

profitable areas. It is entirely possible that strategies must be spe-

cialized for different program classes. How then can the v'arious

strategies be compared? Does it even make sense to compare strategies

that cannot be used for the same program? The ability to determine a

test's quality does not necessarily imply the ability to determine a

testing strategy's quality; this would require inferring the quality

of a testing strategy from its results on a finite number of applica-

tions. This, in essence, is using testing to measure the quality of

testing, a rather dubious approach at best.

The third question suggests that testing is more than searching

for hidden program errors. Most strategies use what may be called an

error discovery paradigm; i. e., the ultimate goal o-f a testing stra-

tegy is to generate inputs that show a program is incorrect. .Jhen a

program executes successfully, the fact is record2ed and the search

continues for an input that will reveal an error. Thus, the error

discovery paradigm only allows the conclusion that a program is

-2-

correct on its tested domain. This paper suggests that an error elim-

ination paradigm is more appropriate. An error is eliminated if a

successful program execution for a given input implies the program

could not contain the error. Such an approach allows the contclusion

that specific errors are not contained in a program.

This paper discusses one way of eliminating errors from programs

through the use of creation and propagation conditions. A creation

condition guarantees that a potential error in the code affects the
program's computation. A propagation condition guarantees that the

effect products an output error. If the output is correct, the poten-

* tial error did not occur, and thus can be eliminated from the program.

* Section 2 of this paper surveys the best known functional and struc-

*tural testing methodologies. Section 3 discusses the results

currently known from testing theory. Section 4 presents reliability

* theory and develops it in the context of error elim'ination as the goal

for testing. Section 5 introduces an error elimination strategy for

testing programs; it is based upon the concept of "error propagation."

The final section proposes areas in which further research seems

* promising.

SON

-3-

.Surveu 9f Dynamic Validation

.j. Dunamic analusis

Dynamic analysis EHow78] involves the execution of a given pro-

gram with specific test data. The output is compared with the specif-

ication to decide correctness. Test data selection may be based upon

the actual code or upon the specifications. The former case is termed

"structural testing" since the structure of the program is considered

in the test data selection. The latter case is termed "functional

testing" because only the input-output behavior is considered in

choosing test data.

I. j. I. Structural Testing

The goal in structural testing is program coverage. If the code

of a program can be sufficiently "exercised" (or covered) it seems

reasonable to conclude that any incorrect code will manifest itself,

thus revealing the presence of an error. Miller [Mi174] and Howden

CHow78] suggest the following two structural coverage criteria:

(1) Statement coverage - Every statement should be executed. It is

unreasonable to expect that unexecuted code will perform

correctly when executed.

(2) Path coverage - Every path in the program should be executed.

"Path" is defined to be any possible flow of control through an

uninterpreted flowchart. Thus a path from a given flowchart may

not in fact be executable due to the particular conjunction of

conditions "guarding" the path. Howden calls such a path

infeasible CHow763.

Clearly path coverage is impossible for any program containing a

loop with a run time determined exit condition, since each repetition

of the loop determines a new path. Various approximations to path

coverage are suggested to reduce the problem to manageable size.

Among these are branch testing and path equivalence classes.

(1) Branch testina. One approximation to path coverage is to ensure

that all potential branches .re executed. "Potential branches"

has been alternately definei to m-ean "the potential outcomes of

a given conditional" or "the means by which those outcomes can be

i'lll IN

-4-

obtained." The difference arises in compound conditional such as

A v B where the potential outcomes would merely require A v B to

evaluate in one case to T and in another case to F. The true

outcomes may be obtained from several different cases such as A =

T, B - F and A - F , B - T as well as A = T, B = T. A simple

resolution of the difference is to require branch testing to be

performed on modified programs in which all compound conditional

are expanded into simple conditionals.

(2) Path eavivalency classes. For the infinite set of paths in a

given program# paths may be equated which share various struc-

tural criteria. For example, level testing equates paths that

have the same depth of nesting within a program as determined

from the static code tMil743. This technique aims at testing

nested paths, thereby guaranteeing coverage of all decision-to-

decision paths in the program. A corresponding dynamic path

equivalence relation equates paths containing at most n itera-

tions of all loops.

The inadequacy of structural testing is shown by the following

incorrect solution frr computing the maximum of a and b.

if a > b

then max : a

else max :- -a

The test {(a=l,1b-I), (a=-l,b-l)} satisfies all the structural cri-

teria given, (all statements are executed, all branches are taken, all

'- Ipaths are executed), yet, the error is not evidenced for this particu-

lar test.

As a result of pernicious examples like this, more refined itruc-

tural criteria have been proposel which require more detailed dif-

ferentiation by the test. These areas may be broadly defined as muta-

tion testing [DeM783 tBud8O, function testing CFos78] CHow8O3] end

domain testing CZei80]. Each of these makes additional assumptions

about the nature of the program design, structure, or evecution

behavior. With these assumptioni a greater refinement of test cases

is possible, resulting in a greater "exercise" of the program.

pI'. ...:

Mutation testina CDeM783 assumes the "competent programmer

hypothesis," namely that a competent programmer under normal condi-

tions will produce code that is close to being the correct code.

Labeling the programmer's code as P and the correct code as P*, it is

reasonable to assume that relatively few syntactic changes in P will

result in P*. Alternately, P* has many "mutants" that are quite close

syntactically. A test set is considered reliable if it differentiates

P* from all of its mutants. A mutant is differentiated when it exe-

cutes incorrectly on a given test set, in which case the mutant is

said to be "killed." If all reasonable mutants are killed by a given

test set, correct operation on that test set implies the program con-

tains no "unreasonable" errors. If the competent programmer

hypothesis holds, the test set is reliable since competent programmers

produce only reasonable mutants.

To limit the number of mutants, it is necessary to restrict the

types and combinations of changes allowed. Common restrictions are to

allow replacing expressions with limited size expressions, to disallow

inserting of arbitrary statements, and to disallow making arbitrary

changes in the flowgraph. It is cogently argued CDeM783 that a test

set which kills single mutants will also kill double mutants. Empiri-

cal studies EBudSO] involving mutation testing have shown it to be

quite effective as well as quite expensive, since a large number of

mutants must be generated and executed. Hamlet's system CHam77]

reduces this time by executing compiled code up to the chosen point of

mutation, and then successively trying each mutant Each system faces

two theoretical problems, namely, wtat happens when the mutant does

not halt within a specified period o; time, and what happens when the

program does halt with correct output. In the first case, an arbi-

trary time limit must be invoked, usually a function of the running

time of the original. In the second case, a human must ultimately

intervene. If the mutant is not the same as the original (as in the

case of an algebraic simplification), then the test set must be aug-

mented. The process begins again until all mutants are killed (or

shown equivalent to the correct program).

Foster has proposed a method that may be called function testing

in which he gives criteria for testing specific program constructs For

typical errors EFos7T3. Howden has generalized this to make test

cases sensitive to potential errors in any of the primitive semantic

functions supported by a programming language. For instance, consider

a language in which each variable has two associated functions. STORE

(varvalue) and RETRIEVE (varvalue). The variable's RETRIEVE function

is invoked whenever the variable must be evaluated; the variable's

STORE function is invoked whenever the variable is assigned a value.

If a mutation occurs that substitutes one variable for another vari-

able in an expression, then the wrong RETRIEVE function would be

invoked when that expression is evaluated. If the test set estab-

lishes at the mutation point different values for all variables, then

the wrong RETRIEVE function would introduce an incorrect value into

the evaluation of the expression. If the effect of this incorrect

value propagates to the output then the error will be manifested.

This test set is in some sense reliable for discovering errors involv-

ing the use of a wrong variable in an expression. Howden extends this

* 'to considerably more complex functions commonly occurring in a pro-

gramming language. The method can potentially eliminate an entire

category of mutants on a single execution. Its weakness lies in not

guaranteeing that potential erTors manifest themselves.

Linear domain testina CZeI830 is an application of theoretical

ideas on path testing given by Howden CHow76]. Each path can be

* Iuniquely characterized by a subset of the input space called the path

domain. A program contains a domain error if an incorrect path Is

followed for an input and produces incorrect output. An incorrect

computation along a path is called a computation error. Domain testing

therefore is a version of path testing. A llnearlu domained oroaram P

satisfies the following:

(1) An input cannot follow an incorrect path and produce correct out-
put.

(2) No paths are missing from P

(3) The input space for P is continuous.

(4) P contains no compound predicates.

(5) Adjacent domains compute different functions.

(6) Each predicate in the program is a linear transformation of the
program inputs.

Certain predicate errors may not be detectable by testing a par-

ticular path. For example, it is impossible to determine if "3" .s the

correct constant in the predicate "x 3*y 0", for a path in wn.sich y

-7-

has a constant value of 0. Such situations may arise when a path

assigns 0 to y ("assignment blindness") or selects only 0-valued y's

("@quality blindness'). Since assignment and equality blindness are

characteristics of the path up to a predicate, no amount of testing of

the path can eliminate the possibility of certain errors in the predi-

cate. Thus, every path containing a predicate implicitly defines a

set of errors that cannot be eliminated from the predicate by testing

that path. The errors in a given predicate that cannot be eliminated

by testing a collections of paths is the intersection of all the non-

detectable errors determined by each path in the collection. Thus,

testing an additional path is useful only if the non-detectable errors

for the new path does not contain the intersection of all the non-

detectabla errors for the paths already tested.

In thr case of a linearly domained program, both paths and predi-

cates can be modeled as linear transformations. Let C oe the

transformation for a path up to a predicate, let T be the transforma-

tion for the predicate, and let T' - T + E be an erroneous version of

T. The transformation T' may not detectably different from T' because

TC - T'C, or equivalently, EC - Z (Z is the zero vector). Solving EC

= Z for values of E yields those predicate errors which are not

detectable due to assignment blindness. Predicate errors may also

* remain undetected whenever EC <C Z but ECv = 0 for all v in the path

domain. Solving this equation for E yields those predicate errors

which are not dectable due to equality4 blindness.

2.1.a. Functional Testina

* I In functional testing test casea are selected to exercise the

* specifications rather than the code itself. This is sometimes termed

a "black box" approach to testing since the code is ignored as a

source of information for selecting test data. The program's function

is the only concern; if the program satisfies the specification it is

correct and coverage criteria are unnecessary. Of primary concern are

the special values for each input variable given by the specification.
T est points are selected to ens..re that values are input for both

extremal and non-extremal points 3s well as special values of every

variable. This quickly results in a combinatorial explosion, con-

trolled by partitioning and refining the overall requirements ;or the

code. Partitioning associates inputs that are closely relationed to

one another; refining associates particular functions and the code

that implements them. Howden How8Ob] provides an excellent overview

of functional testing.

The most general specification available for functional testing

is the requirements document that specifies overall system operation.

Testing requirements involves selecting test points that aim at deter-

mining overall satisfaction of the system goals. Details of how the

function is computed are ignored; an attempt is made to handle the

different combinations of possible input categories. Consider, for

example, a file system. There may be requirement that a COPY does not

destroy the original file. Such a requirement may be tested without

regard for where or how files are stored. In designing the system,

decisions are made on how to represent a particular file type. These

decisions imply that certain functions may be necessary to implement

the COPY operation; these are termed "design functions." Testing of

these individual functions may be done in the same manner as the test-

ing of the COPY requirement, but on a smaller scale. Even more

detailed design functions may be specified at a lower level. In this

manner, the combinatorial problems are somewhat decreased. By identi-

4ying various abstractions that are present in the input data it is

possible to further reduce the number of combinations.

*. Sumbolic Execution

Before leaving this survey of testing methodologies, it is

appropriate to comment upon a hybrid between testing and formal verif-

ication called symbolic execution CHow77] CC19773 and [Han76]. F'ormal

verification requires a proof of various mathematical properties to

demonstrate co-rectness; symbolic execution aids in the proo-s of

these properties by allowing execution of the program with symoolic

data. This is one step beyond data flow systems such as DAVE [Ost76]

in which the program is abstracted into a Plowgraph with movement of

data along the paths. The entire semantics of the pro;ramming

language must be at hand to enable c:mplete interpretation of tPe pro-

gram during symbolic execution This enables the construction of path

conditions (the sequence of decisions made along a patht which can be

an aid in locumenting the program and in determining actual teit 1ata

that can satisfies the path condition. Formal verification is aided

in providing a description of the output in. terms of the input (and

* possibly constants) which then need to be shown to satisfy the output

* condition. The input condition aids in determining what branches may

be chosen, either beforehand as in DISSECT CHow773 or interactively as

* in EFFIGY rHan763.

Symbolic execution systems which attempt to deduce the value of

conditionals are only as strong as the theorem provers upon which they

rely. The inability of a theorem prover to decide the value of a con-

ditional does not guarantee that the value cannot be decided. Thus,

human input may be required mote frequently than necessary. Simii-

* larly, having the path condition detarmined is of little value if test

* cases cannot be automatically generated to satisfy the condition.

- Since such generation is impossible (as discussed in the next section

of this paper), the system must again rely upon human input. The path

condition is frequently so complex, that it is often easier for a per-

son to generate the test data from the code rather than the condition.

-10-

.Development 2_f Testing Theoru

The development of testing theory has followed mostly two direc-

tions, one of general unsolvability and one of solvability over par-

ticular classes of programs. General unsolvability results CHen773

rely heavily on recursive function theory and deal with automatic gen-

eration of test sets. With the general results rather dis;mal,

specific exceptions have been investigated. The search for classes of

programs in which testing is tantamount to formal verification is an

open area of research.

General unsolvability results in testing theory ultimately lie

close to the heart of recursive unsolvability, the halting problem.

Formal proofs of the results in this section may be found in many

excellent sources CHam74] CHen77]; the presentation here will be from

a testing viewpoint. First, we need some notation and a few simple

definitions, as taken from [Lin79].

Notation: If P is a Program then [P] denotes the function that

P computes. The output of P on input x may be written as CP](x), if

[P] is defined for input x. Dom([P]) denotes the domain of CP].

"In" designates set membership and "*" designates set intersection.

Definition A specification S is a set of ordered pairs satisfying the

Following:

a. S is recursive.

b. dom(S) is recursive.

Definition A program P is said to be correct with respect to a specif-

ication S iff

dom (EP] * S) - dom (S)

Definition A test "et is a subset of the domain of a specification.

Definition A program P satisfies § specification I 2n & test Le I iff

For All x In T, EP](x)is defined and (x, [P](x)) In S.

The following classic theorems from recursive functlon theor - are

included for completeness sake. For proofs see [Hen77) or CHam74.

Theorem (Halting Problem) Let P , P ... be an effective enumera-
1 2

tion of all programs (say by their lexical order). There does not

exist a program P satisfying the following:

i if EP 3(x) is defined
x

CP](x) =

if EP 3(x) is not defined
x

Theorem (Program Equivalence Problem) There does not exist a pro-

gram P satisfying the following:

I if (P 3 - [P 3x y
rP(xy)=

0 otherwise

We obtain almost immediately from the above theorems the following

result:

There does not exist a program that generates or recognizes a test

set T that satisfies any of the following properties (for all programs

P. specifications St paths p, statements s, expressions e, and values

a. P satisfies S on nonempty T

b. Path p of P is executed by T

c. Statement i of P is executed by T

d. Expression e in P evaluates to value v

e. P satisfies S on a nonempty subset of T

The results from above lead to a Murphy-like rule for the results

of testing theory , namely , if a desired result is powerful and gen-

erally applicable then it cannot be obtained. Since weaker results

are not usually desired, to maintain strength it is necessary to

reduce applicability. Hence, whereas the corollary gives a gloomy

general forecast, for specific clasies of programs and specifications

all the results are obtainable. Three prominent examples, CBudSO],

CTs17O3, and EHowT8b3, completely characte-ize the program function by

a finite set of tests and a few restrictions abo.z the program struc-

ture.

-1 2-

Early work that has bearing upon testing programs from a particu-

lar class comes from complexity theory based on the LOOP hierarchy

[Mey67 and further analyzed by Tsichritzis CTsi703. Briefly, a loop

program consists of assignment statements

<assign> : <var> : <exp>

<exp> :: <var) I <var> + 1 0

and loop statements

<loop> :: LOOP <var> <assign> END

When control reaches a loop statement the <var> is evaluated to a

non-negative value and the list of assignment statements is then exe-

cuted that number of times. Arbitrary nesting of loop statements is

allowed. Loop is exactly that class of LOOP programs with only

assignment statements. LOOP programs (i>0) are LOOP programs in~i
which the maximum nesting level is i. Thus, LOOP syntactically

contains all LOOP programs. Meyer and Ritchie [Mesa7] have shown that

LOOP properly contains LOOP programs semantically as well. Thusi+1 i
there are some LOOP program functions that are not computable byi+1
LOOP programs. Furthermore, the infinite union of functions comput-

able by the LOOP programs is exactly the class of primitive recursive

functions and thus the hierarchy of functions computed by LOOP pro-

grams forms a hierarchy of primitive recursive functions.

Tsichritzis CTsi70] investigated the first two levels of the LOOP

hierarchy to show that LOOP programs correspond to a subclass of

primitive recursive functions called simple functions. His result for

testing theory is that a finite set of input-output pairs uniquely

determines a simple function. He provides an upper bound on the size

of the test set which is computable from the simple function. Hence

the size can be functionally elated to the structure of the LOOP
1

program since the determination of the simple function computed is

mechanical. The significance is that LOOP forms a class of programs1
which has an algorithm for generating a test set that proves the pro-

gram correct.

Two instances of program classes for which the above corllary

has a solvable counterpart are given in tHow78b] and C3udS0o The

first class is the set of programs characterized by the functioni they

.7
-13-

compute, multinomials. The second class is a subset of LISP programs

*that satisfy a particular recursive schema. The techniques used to

generate data for these classes are not readily extendible to other

program classes because both rely upon the mathematical properties of

the functions being computed.

4.. Reliabilitu Theoru

In attempting to provide a firmer foundation for testing (and to

allow it to be called a "theory") a reliability theory has been

developed for testing computer progr3ams. This theory encompasses the

results of the previous section, and provides a framework for evaluat-

ing the various ad hoc testing strategies mentioned earlier in the

paper by relating the notion of correctness to that of thoroughness of

a test set. Since test sets are essentially finite (excluding symbolic

evaluation), a reliable test set must somehow capture the essence of

the program on a finite domain. The results from the previous section

certainly imply that such sets cannot be algorithmically constructed

or recognized except for certain classes of programs. Reliability

theory has therefore concentrated on ways in which test sets can be

identified for particular classes of programs.

'--4.1. Early Attomots

J Gerhart and Qoodenough first attempted to provide a theoretical

basis for testing CGoo75]. A test selection criterion C is said to be

reliable if and only if all sets that satisfy the criterion either

prove the program incorrect (by failing to meet the specifications) or

satisfy the specification. A test selection criterion C is said to be

valid if and only if for every error point there is a test set that

satisfies the criterion C and proves the program incorrect. From

these two definitions, Gerhart and Goodenough prove their fundamental

theorem, namely, if a reliable test that satisfies the specifications

of a program is also valid, then the program is correct. Thus, the

job of the tester is to demonstrate that a given criterion is both

reliable and valid. Thereafter, one successful execution on a test

set satisfying the criterion proves the program. In some cases it is

trivial to prove either reliability or validity, but rarely is it

trivial to prove both. In fact, as shown by [WeyeO3, if a test selec-

tion criterion is not valid it must be reliable and 1 0 t is not

. . . -I..-.l

-14-

reliable it must be valid. Indeed, if C is an invalid criterion, then

there is a point for which the program is wrong and no test set dis-

covers this. Hence, all the test sets imply the program might be

correct and therefore the criterion is reliable. If the criterion is

Snot reliable, then some of the test sets satisfying the criterion

disprove the program. Thus, for every point there is a test set that

proves the program incorrect and the test selection criterion C is

therefore valid.

In contrast to this thicket of intertwined definitions, Howden

* CHow763 and others have espoused the following definition of reliabil-

ity:

* Definition A test set is reliable for a program P with respect to a

specification S if-

P satisfies S on T -- > P satisfies S on dom(S).

The distinction made between reliable and valid are effectively

combined into one notion that still allows correctness to be con-

cluded, but at a rather strong price. The cost is Pound in having to

verify that the correctness of the program does follow from its

correctness on a finite domain. Howden analyzed path testing in the

light of this definition and showed that rather strong assertions must

* be proved about the program if path testing is to be reliable.

Categorizing errors into computation errors (incorrect computation on

a given path), domain errors (incorrect path selection), and case

errors (missing paths), he was able to show sufficient conditions

under which path testing is reliable for two of these errors, assuming

compound errors do not occur. The results are as follows.

(1) Computation errors - All members of the path domain for a path

containing the error produce incorrect output.

(2) Domain errors - The path domain for the correct and incorrect

program share no points in common. Furthermore, the comcuted

function along each path is assumed to be different. This

prevents an input from following an incorrect path and still pro-

ducing the correct output.

_ ___

f
(3) Case errors - Howden incorrectly identified these with domain

errors, resulting in path testing being reliable for case errors

iff useless code exists in the program text.

As can be seen from Howden's results, even assuming that all

paths can be tested, reliability is simply too strong a requirement to

determine by testing.

4.Z. Error Rtliabilitu

Weakening the notion of reliability either requires narrowing the

class of programs that will be considered or reducing the requirements

of correctness. Linear domain testing CZeiSO] is an example of the

former and mutation testing CDeM783 is an example of the latter.

Recently Howden CHow8O3, Foster CFos78], Ostrand [WeySO], and Weyuker

tWey813 have proposed methods which can be labeled er(Lr-basod testing

strategies. The goal is to demonstrate the absence of certain prede-

fined errors rather than (necessarily) the correctness of the program.

Test data is selected to enable errors, if present, to be revealed

CWey80], provided the execution of the program does not prevent an

error from being manifested. Thus, error-based testing is an example

of reducing the requirement of correctness to weaken the notion of

reliability. The following is a definition of modified reliability:

Definition Z A test set T is F-reliable (Error reliable) for a program

P and specification S iff

P satisfies S on T --- > P contains no errors of type E.

It should be noted the concept of error type used in this defini-

tion is as yet undefined. In the next section "error" is shown to

have two distinct usages, namely to reflect the incorrect operation of

the program (a functional error) or to pinpoint the location of the

error in the code (a structural error).

±2.Errors

To gain a deeper understanding of various testing methodologies

it is necessary to understand each methodology's concept of error.

There are two general vantage points from which errors may be

approached, one structural and one functional. In the st-uctural

approach an error is considered to be associated with the text of the

programs for examples an incorrect conditional that causes some inputs

to follow an undesired path. In the functional approach an error is a

program-computed input-output pair not satisfying the specifications.

In this approach no mention is made of how the output is computed.

The difference between the two is evidenced when an input follows an

undesired path but produces the correct output. In this case the pro-

gram has a structural error but a functional error has not been mani-

fested. (It must be the case however that a functional error can be

manifested on some other inpu, or the "error" is not one at all.)

Both approaches to error have their advantages and disadvantages and a

corresponding range of applicability.

Howden CHow763 uses a structural concept of error, in that an

error is within a particular program and hence can be spoken of as

being a particular expression. within a particular statement, on a

* given path, etc. Such a structural approach Is intuitively satisfying

since it emphasize% that incorrect operation of a program ultimately

lies in some portion of the program text. Correcting the error there-

fore naturally translates into transforming the program text. Hence

to identify that portion of the program as an error seems natural.

This approach has two deficiencies, especially when the concept of

j errors is used to compare various testing methodologies. First, a

structural approach to error definition is more applicable to pro-

cedural rather than functional languages, since in the former the

location of a given error provides considerably more information than

the latter (e.g. the type of the expression values, possible paths,

etc). In self modifying languages such as LISP and SNOBOL, statements

may be executed which do not even exist in the source code. Second, a

structural approach makes the correspondence between specification end

correctness difficult to state. For indeed, it may be quite clear

that a program has failed to meet a specification by. say, terminating

with incorrect output for a valid input. Yet, it is inappropriate to

speak of "the" program error since such an error may actually involve

the compound result of several sta'ements, none of which is wrong in

and of itself, but all are wrong as a whole.

A concept of error that avoids the above problems with the itruc-

tural approach lies in the operation rather than the structure of the

q -17-

program. Such an approach mayj be termed "functional" because it deals

with the meaning of the program as expressed byj its input-output

behavior. In a functional approach an error is associated with the

input-output behavior of the program as determined byJ the specifica-

tions. An error occurs when a given input produces an incorrect out-

put; such an input is labeled as being in error. In actuality,. the

error is the incorrect functioning of the program over some subset of

its input space. Two different programs in different programming

languages can in this sense contain the same error -- theyj produce the

same incorrect output without regard to the syjntactic constructs that

encode the error. Thu%, a functional concept of error allows error

analysis across programming languages, something difficult to achieve

within a structural concept. Also, a functional view allows the

correspondence of errors and program correctness to be clearly stated.

To describe a program error in the functional sense means to describe

a set of inputs that produce wrong results. With such a description

it is possible to locate the structural construct that encodes the

error with a good possibility of seeing how to correct it. The

reverse is not true, however, since being told that given set of

statements is wrong requires, in essences the reconstruction of the

functional error categoryj from the specification to enable the error

to be corrected.

To gain a better understanding of the various testing methodolo-

gigs, it is useful to see what kinds of functional and structural

errors each reveals. We have seen alreadyj that a useful structural

categorization of errors is that of computational, domain, and case

errors. Functional error categories have not been so clearlyj del-

ineated, but mayj be inferred from the ty~pes of tests done in func-

tional testing. If the competent programmer hyjpothesis applies to the

function implemented as well as the code produced, we mayj conclude

that functional errors occur as slight perturbations of the specifica-

tion.

Errors in a function may be categorized as follows:

(1) Boundaryj conditions - The function maye be incorrect on boundaryj

points of the specified ranges of the input variables.

(2) Improper subfunctian selection - The function mayj involve the

computation of several subfunctions. same of which mayj be invoke:

at an improper time.

(3) Improper abstract relationships- The specification treats certain

input variables as an abstraction. The function mayj group the

wrong variables in attempting to implement the abstraction.

(4) Special values - Values like 0, 1t NULL often carryj multiple

meanings across data types. The function mayJ be incorrect at

these values.

It is important to note that these are errors in the sense of the

implemented function (the input-output pairs) and not in the sense of

the location in the program.

* Clearlyj, no method is ideal for discovering all errors. Further-

mores everyj method specializes in finding particular errors. Thus, it

is frequentlyj suggested that a viable testing strategyj is to combine

several of the above structural and functional methods to achieve

* greater coverage of error categories. With more categories covered it

is reasonable to assert that more errors will be discovered, thus

4 increasing confidence in the correctness of the program.

-19-

5. Error Propaoatlon and Elimination

To maximize error coverage in testing, much current research has

focussed upon how to combine validation techniques that cover dif-

ferent error categories. One such combination is proposed here with

examples. It involves a hybrid of verification and testing in which

testing is used to establish the preconditions for a proof which

essentially states that given an error, it will propagate to the out-

put of the program.

Proposals for combining testing and formal verification have

appeared several times CGoo75], [Ger76], and CGe1783. Primarily the

focus has been on how to simplify formal verification. The finite

nature of testing suggests that testing could be used to prove the

basis step for some of the inductive proofs necessary in formal

verification [Goo75]. The difficult nature of theorem proving, sug-

gests that only tested programs should be proved; the error prone

nature of theorem proving suggests that all proved programs should be

tested [Ger76]. Geller EGe178] has attempted to combine testing and

formal verification by using testing to simplify proofs. In this

case, testing is used to verify cumbersome predicates, e.g. those

involved in describing array initialization. The emphasis in all

these approaches is that formal verification demonstrates the correct-

ness of the program and testing supports this process.

The proposal of this paper is that testing and verification may

be combined in quite another way, resulting in conclusions about the

absence of certain errors in the program rather than the total

correctness of the program. This is best explained by the fcllowing

testing strategy:

(1) Identify the error categories of interest.

(2) Identify locations within the program where the errors could

occur.

(3) For each potential error location:

a. Derive a condition under which an error will be
created at the given location (the creation condltion).

-20-

b. Derive a condition under which an error will pro-
pagate to the end of the program (the prooagation condi-

c. Produce the conditions of (a) and (b) with appropri-
ate test data points, then inspect the out put. If the
output is correct# the potential error does not exist at
the given location.

To clarify the above strategy, a precise description must be given for

"error propagation."

. r. rr Prooaaation

A comprehensive treatment of error propagation requires viewing

the semantics of a program from a functional and structural perspec-

tive. In the functional approach CLin793, a program is treated as a

mathematical function, i.e. a set of input-output pairs. In the

structural approach, a program is treated as a means of describing a

set of computations. Informally. a computation is a trace of a

program's execution. The set of computations of a program uniquely

determines the program function, but not vice versa. The ordered

input-output pairs of the program function bear no necessary correla-

tion to the program variables. To provide this relationship, the con-

cept of a "program state" is introduced.

Definition A state of a program P is a mapping

* s: var -- > value

4 which associates a unique value with every variable of P.

An initial state of a program is a state which exists before any

statements of P have been executed. A final state is a state which
exists after the program has halted.

Some variables Cx } of an iritial state may be designated as pro-i
gram input variables. Their corresponding values <u } are called the

program inlgt. Some variables {y } of an initial state mae be .4esig-

nated as program oupu variabILL. Their corresponding values {Cv I
upon program termination are called the progragn :ot. If no vari-

ables are explicitly designated as input or output; then all variables

are considered b.zth input and output

.~ ~ ~ ~ ~~~~~~~M ii=111"II1, ..-... .

-21-

The pogram function that a program P computes, denoted by CP3,

is therefore,

CP] = ((uv) 1 v is the output of P on input u,

where u and v are ordered sets of values)

Any arbitrary program segment P implicitly defines a program function

with all variables designated input and output. For the purposes of

this paper, "program" and "program segment" are used interchangeably

unless otherwise stated.

Each approach to program semantics has certain advantages and

disadvantages for error analysis (see Section 4.3). For error propa-

gation, a functional semantics enables a clear definition of the con-

ditions under which an error in an initial state will propagate to a

final state.

Definition Let y be in the range of the function f. A level set of f

is

D - Cx f(x) - yJ.,

for some element y in the range of f.

Definition A oropagation condition 9 of a function f, is a predicate
defined on the domain of f satisfying the following:

For All x '> y in dom(f),

B(x) and B(y) implies f(x) <> f(y).

All domain elements of f which satisfy a propagation condition B pro-

duce different members of the range of f, i.e., they fall into dif-

ferent level sets of f. This is not to say that each pair of domain

elements from different level sets necessarily satisfy B. It ihould

also be noted that there may be more than one propagation condition

for a function.

The concept of a propagation condition explains step (3) of the

above strategy. Suppose a program P is divided into two parts, F and

0 with [P3 - CQoCR. Suppose further that R and Q are correct and

that R' is an erroneous mutant of R. To ascertain that R is indeed

the correct version and not R', *xec,.te P an an arbitrary input s. If

[R3(s) can be shown to be different from ER'](s) and both [R11s> and

[R'3(s) satisfy a propagation condition for C13]. then the functional

-22-

error from R' will propagate through G. If the propagation condition

is satisfied, inspecting the output allows two conclusions. Not only

is it known that P is correct for s (any testing strategy would have

demonstrated this!), but it is also known that P' (P with R' replacing

R) is not correct. If P' were the correct version, P would have been

incorrect on input s. Therefore, a potential error (that of substi-

tuting P for P') has not occurred. If all potential errors were elim-

inated in this manner, the program would be proven correct for all

input data.

A computational semantics is appropriate for analyzing the state

transformations that occur as a program executes.

Definition A computation point for a program P is an ordered triplet,

c - (n, i, s) where

n is a statement number of a statement in P,

i is the iteration count, the number of times that

statement n in P has been executed.

s is a state of the program P.

This definition includes the iteration count to allow an isolated com-

putation point to be identified with a particular statement as well as

with a particular execution of that statement.

Definition A computation for a program P is a sequence of computation

points representing the execution of P along any feasible path of P.

A subcomoutation for a program P is a subsequence of a compLitatio" of

P.

A few comments are in order concerning the preceding definitions.

First, the level of detail for computations could be increased. Com-

putation points could contain the entire history of the execution of

the program, including all the register loads, comparisons, etc.

Second, a computation of a segment P' of a program P is not neces-

sarily a subcomputation of P. IF'] -'iay be defined for inputs that may

never occur as the result of earlier execution in P; therefore, P' may

have computations that do not 3ccur as subcomputations of P. Third,

computations are defined only for feasible paths Non-feasible pat)s

-23-

could never be executed and therefore have no corresponding computa-

tions.

Computations and computation points facilitate the discussion of

error creation. Incorrect code must be executed for a functional

error to occur. Thus, the computation for a functional error contains

the information necessary to locate the error. An error may be

"created" in one of two ways. First, an incorrect statement may pro-

duce an incorrect intermediate state. This state is incorrect in that

the correct statement would have produced a different state. Second,

the execution of an incorrect statement may lead to an incorrect suc-

cessor statement being executed.

Any distinguishing characteristic of a correct computation may be

used to decide if an arbitrary computation is incorrect. For

instance, suppose that a final state is only obtainable by a computa-

tion of length greater than n. Any computation of length less than n

may then be rejected as incorrect. The process of rejecting a compu-

tation may be viewed as applying a "characteristic function" to the

computation. This function selects a subset of the computation points

from the computation and then evaluates an expression on that subset.

The following defines the format for two classes of characteristic

functions.

Definition For any computation C = (c c) for a program1 j

(a) .LLta on denotes the value Cexp'(s)

where s is the state of the last computation

point for statement number n in C.

If a computation point for statement number n

does not exist in C,

then exp@n is undefined.

(b) tQAehist(n) on Q denotes the k-tuple,

(Cexp3(s), [exp](s [exp3(s)

1 2

. V *, 'I

-e q

-24-

where

k is the number of occurrences in C of statement number n and

s . . s are obtained from the k computation points
1 k

in C for statement number n.

If k - 0 then expthist(n) is undefined.

If k - 1 then expthist(n) = expen.

In the expressions expen and exphist(n), n and hist(n) are called the

comoputation point specifiers , or more simply, the soecifiers for the

expression exp.

The specifiers are restricted to selecting either the last computation

point or all computation points for a particular statement. This is

because the primary concern is the effect a given statement has on a

computation.

An error creation condition applied to a state of a computation

point tells whether the succeeding computation point is in error. A

creation condition is defined for a class of mutants of the correct

construct. All states s which satisfy the creation condition are

transcendental CRow81] for the class of mutants, i.e. when presented

with a transcendental state so no two mutants from the class

transform s into the same state. For example, for the class of poly-
+

nomials P (M) with positive integral coefficients bounded above by M,

any input value greater than M + 1 is transcendental CRow81. If,

therefore, an expected program error is the substitution of one member

of this class for another, an error will be created whenever the poly-

nomial is evaluated on a number exceeding M + 1. This error will be

reflected in the next computation point if the value is assigned to a

variable. If more computing is done first, as in the case of a com-

parison, this error may be canceled and have no effect on the next

computation point. It is here that the detail of the computation

impacts the detection of structural errors. A more detailed co'muta-

tion better distinguishes the instances of error creation and error

cancellation.

Once an error has been introduced into a computation, it is then

necessary to describe how the error will propagate to another part of

the computation, To do this, it is sometimes desirable to relate

-25-

functionally the values of expressions at two different points in the

computation. If the second expression evaluates to an incorrect value

whenever the first evaluates to an incorrect value, then any error

reflected by the first expression will propagate to the second expres-

sion.

Definition Given a program P and class of computations 5. for specif-

iers x and y,

explQx influences exp2@i(2n S

is used to mean the following:

For all C and D in S for which explQx and exp2Qy

are both defined,

if expl~x on C <> expiQx on D then

exp2iy on C <> exp2Qy on D.

If S is omitted, it is assumed to be the set of all computations of P.

A simple example will illustrate the idea of influence. Consider

the code:

t read (z);

2 read (y);

3 while y < 10 do

begin

4 z : z + Y;

5 y :=y + I

endi

6 write (y, z)

For the class of computations S in which yQ2 = 0 for the above code:

(1) zQl influences z@4 implies that the output of the loop will be
different for every input value of z.

(2) V2 influences ze4 implies that the output of the loop will be
different for overy input value of Y. his is trivial true for
the class S, because the input y-value is constant for S.

(3) z~hist(3) influences zt4 implies that the output of the loop will
be different for every sequence of z values the loop can com-
puto.

(4) z@4 influences ze6 implies that an error in z upon loop exit will
propagate to the output statement.

The influence dependences for a program cannot be determined

algorithmically because this could require deciding if arbitrary loops

-26-

halt, which Is impossible (see Section 3). When such dependences can

be shown# however, propagation zor.ditions may be easier to prove. For

example, suppose x~knl influences yQ,2 and y~tn2 Influences z~n3 for a

computation C. If it is known that % contains an incorrect value at
* line ni, then z contains an incorrect value at line n3, and the

error has propagated.

In Section 4. 1 & computation error was defined to be an incorrect

computation along a particular path. To understand the propagation of

* a computation error, the following definitions are given.

Definition Let P be a program with computation C in which computation

point ci - Cnl. 11, si) precedes c2 - (n2, 12, s2). The intermediate

cod determined by ci and c2 is the set of statements of P executed

between n11 and n2 in the computation C. The intermediae function

* determined by ci and c2 is the program function of the intermediate

cod*.

Definition Let C - (cO. ... s cm, . .. a cn) be a computation for a

program P.

Lot R be the intermediate code determined by cQ and cm.

Let Q be the intermediate code determined by cm and en.

* Suppose R is incorrect and that R* is a correct mutant

of R.

Let sO be a valid input for P for which ER is defined.

Lot

CR3(sO) - si [R*J(sO)- I

CQJ(sl) -s2 G3)(sl*) -s42*

Let exp be any expression over the program variables.

(a) If si <> sl* then R has created a state error sl for sl* on input
so.

(b) If R has created a state error and s2 C, s2. the state error st
for sic proggatzs through 0.

cc) If Cexp3 (si) <> Cexp3 (sic) then R has created an expression
error for exp.

The following theorems are trivially true by substitution of the

definitions given earlier in this section. They are given here to

illustrate how the concepts are related.

-27-

Theorem A state error sl for %2 propagates through the intermediate

code, P. iff sl and s2 are in different level sets for CP3.

Proof Consider state error si for s2. If sl and s2 are in different

level sets of CP], then [P] (e1) <> CP3 (s2), and the state error pro-

pagates through P. If the state error propagates through P, then CP]

(el) <> CP] (s2). Thus, sl and s2 are in different level sets of P.

Theorem Let P be the intermediate code delimited by statements ni and

n2. Let C and D be two computations of P with different initial

states s and s . respectively.
C D

(1) expllnl influences exp24n2 for all computations executing P,

iff

(2) If s , s are in different level sets of rexplJC 0°
then [exp2EP3 (s) > Cexp2CP3 (skJ k

Proof Assume (1). If s and s are in different level sets of Cexpl3,C 0

then Cexp1] (s) <> Eexpl] (s). By definition of influence, Cexp2]C D
CP] (s) <> Cexp2] EP] (s) and (2) follows immediately.C 0
Assume (2). If [expl] (s) <> [expl] (s) then s and s are in dif-C D C D
ferent level sets of Cexpl]. Combining this with (2) yields Cexp23
rP] (s) <> texp23 CP3 (s), and (1) follows immediately by the defin-

C D
ition of influence.

It has been noted already that there can be more than one propa-

gation condition for a function f. This is claar because every propa-

gation condition is Implicitly defined by its propagation Lft, the set

of all values that satisfy the propagation condition. Every subset of

a propagation set is a propagation set so there are many propagation
conditions.

Theorem Let B be a propagation set for a function f. No two members

of B are in the same level set of f.

Proof Let x and y be different elements of 8. By definition of a pro-

pagation set, f(x) C> f(y). Thus, x and y can not be in the same

level set of f.

-28-

What characteristics, if any, qualify one propagation condition

to be declared "better" than another? One characteristic is the "gen-

arality" of the propagation condition or set. Recall that a potential

error can be eliminated only if a state error can be detected when it

occurs. A state error si for s2 can be detected only if both si and s2

satisfy the propagation condition, i.e. both sl and s2 are in the

propagation set. Therefore. increastng the size of the propagation

set increases the number of potential errors that can be eliminated.

If B is any propagation set for the function f, it satisfies the fol-

lowing set equation:

B - {x I For All y <> x in B, f(x) <> f(y)}.

Clearly# the smallest propagation set is the null set. Also by the

last theorem above, all members of B are in different level sets of

f. Since two propagation sets may both be infinite, describing one as

larger than an other is inappropriate; the term "most general" may be

used instead. Thus, a most general propagation set of a function f is

a propagation set that contains one member from each level set of f.

Associated with this set is a most general propagation condition.

A second characteristic of a propagation condition is that of

applicability. Until now it has been implicitly assumed that the

function will be applied to all domain elements. Since some values

may not be feasible as input to an intermediate program function, the

propagation set should contain as many feasible values as possible.

Propagation conditions may therefore be compared on the basis of how

many feasible values they contain.

A final characteristic of a propagation condition is that of

efficiency. If two propagation conditions are equivalent in terms of

applicability and generality, they may be differentiated on the basis

of their ease of evaluation. This efficiency characteristic can not

increase the number of errors that can be theoretically eliminated,

but it may increase the number of errors that can be practically elim-

inated in an implementation.

. . stng Accumulation Proarams

Accumulation programs [BasSO] are the class o; programs satisfy-

ing the following schema and restrict.ions:

=Ip

-29-

1 0: z : 0z;

2 while Not (y In Null(Y)) do

begin

3 z acc (z, k(y));

4 y h (y)
end

Restrictions

(1) ydenotes all program variables requirling definition for the loop
body to be defined on any iteration. z does not enter into the
computation for h() in line 4. Thus, z does not influence the
flow of control of the loop.

(2) The functionalities of h, k, acc and 0 are:

Eh] : -- > Y

[k] : Y -- > Dbase

Cacc] : Z x Dbase -- > Z

[03 : Z x Y -- > Z x Y

where Y denotes the values the variable may asu denotes
the values the variable z may assume. ad Dbaseduetes'the range
of Ck]. Null(Y) denotes all values of y which terminate the loop.

The following is an example of an accumulation loop:

z : O y := 0;

while y < 10 do

begin

Z : z + Y

y y + 1

end

The variable z accumulates information as the loop iterates through

different values of y. In this accumulation program we have,

Y, Z, Dbase = Natural Numbers

Null(Y) C -y y y <= 10)

Chi - successor function

tk] = identity function

tacc] - addition function

Clearly, the restrictions are satisfied.

In an accumulation loop, the restrict'on on z allows the computa-

tion for y to be separated From the computatiin for z. The above

accumulation loop schema Q is theref-.re functionall equivalent to the

following trans;.:rmed schema GG:

.*,

-30-

O: n := 0; z :- zO;

While Not (y In Null(Y)) do
begin

RhCn3
n n
y :- h(y)

end;

j :- 0;

while j < n do
begin

z : acc (z, k (RhCj]))
j : j + 1

end

The first loop in Go computes the same intermediate values of y that

0 computes, but stores them in an array Rh (results of h). The second

. loop in 00 processes the array element-by-element, extracting the

desired information (via k) and accumulating it into z (via ace).

Lemma The accumulation loop 0 computes the function:

rG3(z0,y0) - (z.y) such that
n-1

z:-(Cacc3(Cacc(...(Cacc](zO,Ck(y),Ck2(Ch](yO)),...,Ck3(Ch] (yO))
n

y:-Ch] (gO)
n

where n is the smallest value such that Eh] (yO) is in Null(Y).

To be able to test accumulation loops for possible errors, it is

necessary to understand how errors propagate through an accumulation

loop. Suppose H is a class of mutants of h; we say that H is an error

cateooru for h. Clearly, a substitution of h' in H for h may affect

the computation of the loop. If it can be shown that the substitution

results in a "positive error" Eh3-1y) > Eh](y)) during every itera-

tion of the loop, and that this positive error accumulates into the

variable z, then z will necessarily be incorrect on loop termina-

tion. The following theorem states sufficient conditions to guarantee

that such accumulation does occur

Definition For two k-tuples,

A = -Ca . a I and B = <b , , b 2.
I k 1.k

A <= B iff For all i, a -b

ii

This definition is applied recursivel.I if a and b
I i

are sets of the 3ame cardinality If A <= 3 then 3 ,maximi:es A

p

-31-

Theorem For the accumulation program schema 0 above, let

H denote the error category of h

Y denote the set of -values for
all possible iterat ions of the loop.

Z denote the set of z-values for all possible
iterations of the loop.

D denote a subset of the domain of Ck:.
k

Assume Y, Z, and D each have a partial ordering operator, <-.
k

Let 0' result from substituting h' in H for h in 0. Let C be the com-

putation of 0 on input yO and C' be the computation of 0' on input yO.

The following conditions are sufficient to guarantee that an expres-

sion error for z occurs after executing 0 and 0' on input yO.

(1) 0 and 0' iterate the same number of times (> 1).

(2) For each iteration, Eh](y) <= Ch'](y),

or

For each iteration, [h](j) ',, Ch'J(y).

(3) For at least one iteration, Eh](y) <> Ch'](y)

(4) [k] is strictly monotonic on D
k

(5) For each iteration both Eh] y) and h'(y) are members of D kk

(6) Cacc is strictly monotonic in both variables.

* Proof

Let Rh denote the tuple containing the initial

and intermediate y-values computed by Q.

Let Rh' denote the tuple containing the initial

and intermediate y-values computed by G'

By conditions (1) and (2) of the theorem, ass-ume without

loss of generality that Rh' maximizes Rh.

By conditions (3), (4) and (5, Zk](Rh') maximizes [kl(Rh).

Let

Ck3(Rh) = (z ... ,z) and k](Rh') = (z z ').
1 n s n

For schema (by the preceding hrnma),

- p

-32-

z Cacc](Cacc](. Eacc3(z z), z)2) z
0 2 2 n

and for schema G',

z - Cacc](Cacc](... (Cacc](z ', z '), z ').), z)
0 1 2 n

By repeated application of condition (6) of the theorem)

we may conclude that an expressicn error occurs for z.

In the following example, the above theorem will be used to aid

in testing a program containing an accumulation loop.

1II I II.. - i ; _ - . . , i ' . .

-43

The strategy and the theory~ developed are now applied to a pro-

gram which computes the area under a curve byj rectangular approxima-

tion. Test data is not included due to the generality~ oi~ the poly~no-

mials in the program.

program calcarea (input, output),
var as b, incr. area, value : eali

beg in

I read (a, b.incr); 'Cincr 01

2 value :p1(a)

3 area 0;~

4 while a + incr <- b do

begin

5 area :- area + value *incr;

6 a :-a + incr;

7 value := p2(a)

end;

9 incr :- b - a;

9 if incr >- 0 then begin

10 area :- area + value * incr;

11 writeln ('area byj rectangular method: ', area)

end *lSe

12 writein ('illegal values for a=', a, and b=', b)

end.

Using the strategyj given above, we have the following.

Stop 1. Idnifu~ the error categries.

(1) Incorrect polyjnomials p1 and p2, both of which are members of

P (M), the set of poly~nomials of the form

I n
a + a x +. + a x

0 1 n
whecre

0 C=a <- M and a is an integer.

P (M) is an important category cf polynomials for which transcen-

dental testing is appropriate [FowB13. (See Section 5.1. o-F this

paper.)

-34-

(2) Incorrect comparisons. A wrong comparison operator is used.

(3) Incorrect accumulation. Wrong variables or wrong operators are
used.

(4) Incorrect initialization.

(5) Incorrect output. An incorrect variable is used in an output
statement.

Stop F Identify the locations where errors coul..d ocu.

1. Incorrect Polynomials (IP) 2,7

2. Incorrect Comparisons (IC) 4,9

3. Incorrect Accumulation (IA) 5,6,10

4. Incorrect Initialization (II) 2,3,8

5. Incorrect Output (10) 11,12

jte9 Derive Creation and Propagation Conditions

A creation condition and propagation condition are now provided

for each of the error locations given in step 2. A creation condition

guarantees that the error, if present, produces a state error. It

must be satisfied just before the rpotentially erroneous statement is

-,' executed. A propagation condition guarantees that this state error

propagates to an output statement. It is evaluated immediately after

the potentially erroneous statement is executed.

Each error is designated by an error category abbreviation, fol-

lowed by a line number, e.g., IP 7 designates "Incorrect Polynomial at

line 7.

Erro ro Li' ii
.Creation Condition -- all variables have different values.

Propaoation Condition -- true

Error j~IA

Two cases are considered.

(1) An incorrect accumulation operator has been useo; perhaps +

should have been -, *, or /.

I 1t

-3_-

Error Creation Condition

value * ncr C> 0

• area > 2 and value * incr) 2

/ value * incr > I and area > 1

Proopaation Condition -- true.

(2) An incorrect accumulation base element (value * incr) has been

used.

Error Creation Condition

Off by a constant true

Off by a factor value * incr <> 0

Propaaation Condition -- true.

Error I
Perhaps the >= should have been another comparison operator.

Error Creation Condition

> incr

i<c Ctrue
<= incr

incr C= 0

Propagation Condition -- true.

* Error 11 8

Three cases are considered.

(1) The wrong variable may occur on the left hand side of tne assign-

ment. This error is particularly nasty because any resulting

functional errors depend upon whether the incorrect variable is

used ("live") or not used ("dead") in the remaining computation.

If the incorrect variable is dead, then a functional error can

occur only when the correct variable influences the output of the

program. Data flow analysis will detect this type of error.

Additionally, if the incorrect variable is live, then a func-

tional error will also occur whenever the incorrect ,,ariable

influences the output o; the Drogram. Since data flow analysis

can isoiae the first error, tha second error is considered here.

-36-

Error Creation qondition

Substitution of a live liner .' b-a]24

variable for incr on the

left side of the

assignment statement

Prooaoation Condition

Two propagation conditions are given, the first representing a

domain error and the second representing a computation error.

liner >- 0 and (b-a) < 03e4

liner >= 0 and value CS' 0]14

Recall that the specifier e4 implies evaluation of these expres-

sions at loop termination. These two conditions may be combined

yielding:

liner >- 0 and ((b < a) or value 0 0)3e4

(2) A wrong variable may have been substituted on the right hand side

of the assignment.

Error Creation Condition

variable 'a' is an All variables have different

.. incorrect variable values from 'a'.

variable 'b' is an All variables have different

incorrect variable values from 'b'.

Propagation Condition -- Same as in case (1).

(3) An incorrect constant expression may have been used on the right

hand side of the assignment.

Error Creation Condition

Off by a constant true

Off by a factor Co-a .:-03124

Prooagation Condition -- Same as in case (1).

Error IP

Creation Condition

a16 > M + 1 for each iteration of the loop and the loop executes more

than once.

Recahl that all ",alues greater than + 1 are transcendental -or al1

q!

-37-

+

polynomials in P (M). See Section 5. 1 of this paper.

Propagation Condition -- true.

The simplicity of this propagation condition is guaranteed by the

accumulation loop theorem from the previous section. In order to show

this, it must be shown that the loop is an accumulation loop and that

it satisfies the conditions of the theorem. If this is the case, then

the theorem states that there will be an expression error for area on

loop exit. Furthermore, on the last iteration of the loop, a + incr

<= b on loop entry, so b - a >- 0 on loop exit. But, b - a >= C is

the propagation condition which ensures that areae8 influences

areaQlO any error in value1lO merely increases the magnitude of the

error in area@tO. Thus, if the loop satisfies the conditions of the

theorem, the given error will propagate to the output statement in

line 11.

To show that the loop is an accumulation loop, we note the fol-

lowing correspondences to the schema G:

y corresponds to (a,b,incr,value)

Null(Y) = {(a,b,incr,value) ! a + incr > 0}

z corresponds to area

Ch](a,b,incr,value) = (a+incr, b, incr, p2(a+incr))

[k](a,b,incr,value) = value * incr

[acc3(area,x) = area + x

Clearly, area does not enter into the computation of h. Also,

Y = Real x Real x Real x Real

Z = Real

'Dbase = Real

D = Real x Real x {incr} x Real, i.e. D
k k

has a fixed value of incr.

To show that the loop satisfies the conditions of the theorem, we

first note that the error category is

H = {h' Ch]'(a,b,incr,value) = a+incr,b,incr,[P'](a+incr))},
+

where P" is a member of P (M).

The theorem conditions are therefore satisfied.

-38-

(1) Substitution of h' (from error categ ory H) for h does not change
the number of times the loop executes, since the computation for
a, incr, and b remain unaffected.

(2) Provided the creation condition is satisfied for all iterations
of the loop,

Ch'](y) >- Eh](y) for each iteration
or

Ch](y) >- Ch'](y) for each iteration.

If this were not the case, then for some tl and t2, transcenden-
tals for h and h',

Ch3(tl) > Ch'](tl) and Ch'](t2) > Chi(t2).

Since the functions [h3 and Ch'3 are continuous, there must be a
point t between tl and t2 such that Ch](t) - Ch'](t). Thus, t
is not a transcendental. But this is a contradiction since all
oints greater than M + 1 are transcendental and t :. tl > M + 1.
bus the functions Ch] and Ch'] do not cross on any point beyond

M + 1 and one always maximizes the other on this interval.

(3) If the creation condition is true, Ch'](y) <> Chi(y) for all
iterations of the loop.

(4) Ck] is strictly monotonic on D since incr is a nonzero constant
k

for the loop.

(5) For all iterations Ch3 and Ch'] produce members of D This is
clear because all members of H var onl in their computation for
value, leaving the computation a, an incr unaffected.

(6) Cacc] is strictly monotonic in area and value*incr.

A wrong h function may be implemented. Two instances are considered.

Error Creation Condition

Off by a constant > 0 true

Off by a factor > 1 incr > 0

Propagation Condition -- true

For either error, a > b upon loop exit, as can be seen from the last

iteration of the loop. Thus, lincr .C 031 causes a domain error with

statement 12 executed in place of statement 11.

* Error IA 5

A wrong k function may be implemented.

Error Creation Condition

Off by a constant true

Off by a factor value * incr < 0

Progaaation Condition -- true.

Since neither of these two errors affect the monotonicity of k, the

argument used for IP 7 holds.

-39-

Error IC

In place of the <=, another comparison may have been substituted.

Error C L nCondition

< a + incr - b

> true

>= a + incr <> b

a + incr C b

<> a + incr >= b

Propagation Condition

The substitution of < for <- is an excellent example of a mutant

being unobviously equivalent to the given program. This is discovered

while attempting to find the propagation condition for this "error."

The substitution may cause the loop to halt one iteration too soon,

with termination guaranteeing that incr is unchanged by line B.

Thus, the execution of line 10 computes the same value for area as an

additional execution of line 5. An additional execution of the loop

would result in Eincr = 0]@8, so Evalue * incr= 0329. Hence, statement

10 would not change the value of area computed by the additional exe-

cution of the loop. Thus, the substitution of < for <- is an

equivalent mutant and the propagation condition is false.

For the other four substitutions to influence an output, a

created error must propagate to statement 11 or 12. A propagation con-

dition of a + 2*incr < b is sufficient, since this guarantees the loop

will execute at least twice, causing the loop computed value for area

F' ito be strictly greater than the tail approximation in lines 8-10.

Error U a
Suppose area should have been initialized to another constant

Creation Condition -- true

ProoaL .on Condition -- a <- b

With this condition satisfied. area03 influences area(l0. Therefore,

if an error has occurred at line 3, an incorrect value for area will

be printed by line 10.

Error JP_ ?,, U 2
Creation Condition -- a > M + 1

-40-

Propaation Condition -- a C b < a + incr

This condition forces the program to follow the path,

p - (1, 2, 3, 4f, 9, 9t, 10, 11),

skipping the loop body. Ea < b3@l ensures that Eincr 0 3t9, so

value1lO influences areaQlO. Since valuelO - valueQ2 for path p,

value*2 influences area10.

2. ±. &.Aluiln =_ Strateau

It should be noted that errors have been eliminated in a

"bottom-up" fashion. Recall that the justification for the strategy

assumed that a program could be separated into two segments R and 0,

with 0 being correct. Certainlq if R is the whole program, 0 is

trivially correct. As errors are eliminated from the end of R, then

0 can expand to contain this "correct" code. It is possible, however,

that R contains two structural errors that mask one another, with the

first preventing discovery of the second on certain paths, and vice

versa. For example,

1 x :
3 * y;

2 z :x -4;

3 write (z);

Suppose the error category of interest is "incorrect constants."

Clearly, both the creation and propagation condition are true for this

error in lines 1 and 2; any state will produce an incorrect state and

the error is guaranteed to propagate to line 3. Yet, for y@1 = 4, the

following program is equivalent and contains the incorrect constants:

I x : 2 * Y;

2 z : x;

3 write (z);

Testing additional paths in which statements I and 2 are not cou-

pled, and testing a coupled path with more inputs are two u.ays oi

reducing the inpact of such errors. The situation is similar o that

=p

-41-

of linear domain testing in which assignment and *quality blindness

prevent certain predicate errors from being eliminated. Here, however,

the blindness is due to a presumed error in the first part of the pro-

gram, rather than in the correct operation of the first part of the

program. Evidence exists that such coupling rarely occurs in practice

CBudSO. but investigation of the phenomenon may yield greater insight

into error propagation. Such investigation is currently under tuay.

pt

-42-

" |k. Conclustony

An error-based testing strategy has been proposed for combining

testing and verification in a new way. Some of the advantages are as

follows:

(1) In structural and functional testing incorrect code may remain

undetected even though executed. Consequently, the certainty of

the results is difficult to determine. The strategy given her

can guarantee that certain common errors are not present in the

program. Structural and functional testing, on the other hand,

only guarantee the elimination of very few error categories.

Test data that guarantees the elimination of certain errors in

addition to satisfying the usual functional and structural cri-

teria is necessarily of better quality than test data that issues

f no guarantee. Thus, the proposed strategy provides a means of

increasing test data quality.

(2) When quality is lacking, the tester can be directed to specific

lines of code where potential errors have not yet been elim-

inated. This guidance is more specific than possible with struc-

tural testing.

(3) The proposed strategy is more efficient than mutation testing for

killing particular mutants. First, the actual mutants do not have

to be generated or executed. Second, one test point can elim-

inate all mutants along an execution path. Third, mutation test-

ing provides little guidance when a mutant executes correctly.

:. IThe proposed strategy guides the data selection process towards

selecting data that creates the state in which an error could

occur and in which it will propagate.

(4) The proposed strategy is based ,pon the function testing sug-

gested by Foster and Howden, from which the concept of a creation

condition may be inferred. The inclusion of a propagation :ondi-

tion in the strategy provides greater assurance that created

errors will not be canceled by the remaining execution of tle

program.

(5) The proposed strategy extends linear domain testing by removing

two restrictions. First, it need not be assumed th3t the

tp

-43-

predicates to be tested are a linear combination of the input

variables. Second, it need not be assumed that a domain error

necessarily produces a functional error. Indeed, this must be

proven in the proposed strategy.

(6) The proposed strategy combines testing and formal verification in

a new way. The goal is to force the program to inform the tester

of its own errors through testing. Formal verification is used

to support this process. As a support tool, formal verification

is used in a restricted capacity, lessening the difficultyj nor-

* mally encountered in formal proofs of correctness.

(7) Weyukor CWey8iJ has argued that a testing strategy should use all

the information that can be obtained from the program. the

program's specification, and the errors commonly encountered.

This strategy suggests that the computation of the program itself

is another important source of information. The wealth of infor-

mation that is contained in the computation has been virtually

untapped by structural testing. The computation of a program on

one input effectively eliminates a huge number of possible

errors. Greater knowledge of these eliminated errors would

increase our confidence in a program's correctness.

One weakness of the proposed strategy is the assumption shared

with mutation testing that errors can be eliminated one at a Itime,

Si. e. two errors do not interact in such a way that each error prevents

the other error from being eliminated by the strategy. There is evi-

dence that this "coupling effect" rarely occurs in practice CBud8OJ,

yet the strategy does not currently handle such situations. The con-

cepts of creation conditions, propagation conditions, and influence do

provide a framework in which such errors can be discussed and

analyzed. Such work is currently in progress.

Point (7) suggests the direction of research needed.

(1) Program errors need to be categorized and creation conditions

developed for each category.

(2) Loops other than accumulation loops need to be analyzed as to

their error propagation characteristics.

-44-

(3) Automatic methods for developing propagation conditions need to

be developed.

(4) Methods need to be developed for correlating the information

obtained from different computations. A set of computations may

collectively eliminate an error category for which no individual

computation in the set can. For example, consider the potential

error in which an incorrect variable occurs in an output state-

ment. The creation condition of "all variables different from X"

may not be satisfied on any one computation, but over a set of

computations all variables may indeed be differentiated from X.

This potential error can therefore be eliminated by the collec-

* tive evidence from the set of computations.

I

*1

.. r

-45-

CBasSOJ Basu, Sanat K., "A Note on The Synthesis of Inductive Asser-
tions," IEEE 1, pp. 32-39 (Jan. 1980).

[Bud80] Budd, Timothy A., DeMillo, Richard A., Lipton, Richard J., and
Sayward, Fredrick G., "Theoretical and Empirical Studies on Using
Program Mutation to test the Function Correctness of Programs,"

POPL, pp. 220-233 (1980).

ECla77] Clarke. L. A., "A System to Generate Test Data and Symboli-
cally Execute Programs," LE TSE =-&, pp. 215-222 (Sept. 1977).

[DeM78] DeMillo, R. A., Lipton, R. J., and Sawyer, F. G., "Hints on
Test Data Selection: Help for the Practicing Programmer," Com-
outer 11, pp. 34-41 (April 1978).

EFos783 Foster, K., "Error Sensitive Test Analysis (ESTA)," Digest for
the Workshopon Software Testino and T.l_.t Documentation, (Dec.
1978).

EGe178] Geller, M., "Test Data aws an Aid in Proving Program Correct-
ness," CACM ZZ1, pp. 368-375 (May 1978).

CGer76] Gerhart, Susan L. and Yelowitz, Lawrence, "Observations of
Fallibility in Applications of Modern Programming Methodologies,"
IEEE InE g__-Z, 3s (Sept. 1976).

CQoo75] Qoodenough, John B. and Gerhart, Susan L., "Toward a Theory of
Test Data Selection," IEEE Trans. Soft. Eng. =SE-=EI, 2, pp.
156-173 (June, 1975).

[Ham743 Hamlet, Richard, Introduction 1o Comoutation Theoru, Intext
(1974).

[Ham773 Hamlet, Richard G., "Testing Programs with the aid of a Com-
piler, " IEEE TSE §L-2, 4. (July, 1977).

[Han76] Hantler, Sidney L. and King, James C., "An Introduction to
Proving the Correctness of Programs," ACM Computing Sgrveas a. 3.
pp. 331-353 (Sept. 1976).

CHen773 Hennie, F., Introduction 1o Computabilitu, Addison-Wesley
(1977).

CHow763 Hawden, William E. "Reliability of the Path Analysis Te;ting
Strategy," :IE L - 3. (Sept. 1976).

[How77] Howden, William. E., "Symbolic Testing and the DISSECT Sym-
bolic Evaluation System pp" TSE S-2, p . 26-278 (1977).

,q -46-

CHow78] Howdan, William. E., "A Survey of Dynamic Analysis Methods#"
pp. 184-206 in Tutria: Software Testng and Validation Methods,
ed. E. Miller, (1978).

CHow7Tb] Howden, William E., "Algebraic Program Testing," Acta Infor-
atLSa L2, (1978).

EHow80b] Howden, William E., "Functional Program Testing," 1 TSE
SE- , 2. pp. 162-169 (March 1980).

CHowSO] Howdan, William E., "Completeness Criteria for Testing Elemen-
tary Program Functions," DM-212-IR, Dept. of Mathematics,
University of Victoria, Victoria, British Columbia (1980).

CLin79, I 9r, R C., Mills. H. D., and Witt, B. I., Structured P
Traifto Tho±ru an&. Practice, Addison-Wesley (1979).

MeV67] Mayor, A. R. and Ritchie, D. M., "The Complexity of Loop Pro-
grams," Proceedinsl 9f the ACM National Meeting, pp. 465-469
(1967).

[Mi1743 Miller, E., Paige, M., Benson, J., and Wisehart, W., "Struc-
tural Techniques of Program Validation," Digest of Papers COMPCCN
Z4, pp. 161-164 (Spring 1974).

lOst76] Osterweil, L. J. and Fosdick, L. D., "DAVE -- A validation
Error Detection and Documentation System for Fortran Programs,"
Software PractcL al ExperInce , pp. 473-486 (1976).

ERow81 Rowland, John H. and Davis, Philip J. , "On the Use of Tran-
scendentals for Program Testing," QA= &1, 1, pp. 181-190 (Jan.
1981).

* Tsi70 Tsichritzis, D., "The Equivalence Problem of Simple Programs,"
JACM 17, 4, pp. 729-738 (Oct. 1970).

CWey80 Weyuker, Elaine J. and Ostrand, Thomas J. , "Theories of Pro-
gram Testing and the Application of Revealing Subdomains,"
TSE - 3 pp. 236-246 (May 1980).

[Wey91] Weyuker, Elaine J., "An Error-Based Testing Strategy," New

York University Report, Department of Computer Science, Courant
Institute of Mathematical Science (Jan. 1981).

CZeiS03 Zeil, Steven J. and White, Lee J., "Sufficient Test Sets for
Path Analysis Testing Strategies," OSU-CISRC-TR-8C-6. Computer
and Inforamtion Science Research Center The Ohio State University
(1980).

.

p

